Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Huỳnh Như

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.

a)  Chứng minh rằng:DAMC đồng dạng với DBMD.

b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.AC

c)  Vẽ MH vuông góc với CD tại H. Chứng minh:HM2 = HC.HD

d)  Gọi I là giao điểm của BC và AD. Chứng minh: DE.IA = ID.EC

Câu 2. Cho DABC có ba góc nhọn, AB < AC , đường cao AH và trung tuyến AD. Kẻ DE, DF lần lượt vuông góc với AB, AC tại E, F. Chứng minh:

a)   DABH DDBE

b)    AC.DF = AH.DC

c)   DE AC

DF     AB

Câu 3. Cho D ABC vuông tại A có AB = 8cm, AC = 6cm.

a)  Vẽ đường cao AH. Chứng minh: D ABC       D HBA.

b)  Qua C vẽ đường thẳng song song với AB và cắt AH tại D. Chứng minh: D AHB           D DHC.

c)  Chứng minh : AC2 = AB. DC

d)  Tứ giác ABDC là hình gì? Vì sao? Tính diện tích của tứ giác ABDC.

Câu 4. Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm và hai đường chéo cắt nhau tại O. Qua B kẻ đường thẳng a vuông góc với BD, a cắt DC kéo dài tại E.

a)  Chứng minh: DBCE DDBE.

b)  Tính tỉ số SBCE,SDBE

c)  Kẻ đường cao CF của DBCE . Chứng minh :AC. EF = EB. CF

Câu 5. Cho tam giác ABC vuông tại A có AH là đường cao(H ΠBC ) .

a)  Chứng minhD AHB ∽DCHA .

b)  Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E.Chứng minh D AEB ∽D DAB .

c)  Chứng minh.BD = BH.BC .
d)  Chứng minh BHE = BDC .

Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 23:00

5:

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: Xét ΔAEB vuông tại E và ΔDAB vuông tại A có

góc ABE chung

=>ΔAEB đồng dạng với ΔDAB

c: ΔABD vuông tại A có AE là đường cao

nên BE*BD=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BE*BD=BH*BC

d: BE*BD=BH*BC

=>BE/BC=BH/BD

=>ΔBEH đồng dạng với ΔBCD

=>góc BHE=góc BDC


Các câu hỏi tương tự
Le Uyen Linh Nguyen
Xem chi tiết
Minh Quang Nguyễn
Xem chi tiết
Lan Phạm
Xem chi tiết
Đăng
Xem chi tiết
trang anh
Xem chi tiết
Edogawa conan
Xem chi tiết
Vòng Vĩnh Phát
Xem chi tiết
Đăng
Xem chi tiết
Phan Hoàng Quốc Khánh
Xem chi tiết