Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của hình nón đỉnh S đáy là hình tròn tâm O' là. (biết thể tích của nó bằng 1/8 thể tích khối nón đỉnh S, đáy là hình tròn tâm O).
A. h=5
B. h=10
C. h=20
D. h=40
Cho một hình nón có đỉnh S, tâm của đáy là O. Cắt hình nón bởi một mặt phẳng (P) đi qua trung điểm của SO và song song với mặt đáy, ta được một hình nón mới có đỉnh S và đáy là hình tròn thuộc (P). Gọi V 1 , V 2 lần lượt là thể tích khối nón ban đầu và thể tích khối nón mới. Phát biểu nào sau đây là đúng?
A. V 1 = 4 V 2 .
B. V 1 = 8 V 2 .
C. V 1 = 16 V 2 .
D. 3 V 1 = 8 V 2 .
Trong không gian Oxyz, cho hình nón có đỉnh I thuộc mặt phẳng P : 2 x - y - 2 z - 7 = 0 và hình tròn đáy nằm trên mặt phẳng R : 2 x - y - 2 z + 8 = 0 . Mặt phẳng (Q) đi qua điểm A 0 ; - 2 ; 0 và vuông góc với trục của hình nón chia hình nón thành hai phần có thể tích lần lượt là V 1 và V ( V 1 là thể tích của phần chứa đỉnh I ). Biết rằng biểu thức S = V 2 + 78 V 1 3 đạt giá trị nhỏ nhất khi V 1 = a , V 2 = b . Khi đó tổng a 2 + b 2 bằng
A. 2031 π 2
B. 377 3
C. 52 3 π 2
D. 2031
Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của khối nón đỉnh S đáy là hình tròn tâm O' bằng bao nhiêu, biết rằng thể tích của nó bằng 1 8 thể tích khối nón đỉnh S, đáy là hình tròn tâm O.
A. h = 5
B. h = 10
C. h = 20
D. h= 40
Cho hình nón đỉnh S có chiều cao h và bán kính đáy r=2a. Mặt phẳng (P) đi qua S và cắt đường tròn đáy tại A và B sao cho AB= 2 3 a . Biết khoảng cách từ tâm đường tròn đáy đến (P) bằng 5 a 5 . Tính thể tích V của khối nón.
A. V = 2 3 πa 3
B. V = 4 πa 3
C. V = 2 πa 3
D. V = 4 3 πa 3
Cho hình chóp nón N có bán kính đáy bằng R, đường cao SO. Một mặt phẳng (P) cố định vuông góc với SO tại O’ và cắt khối nón theo hình nón có bán kính R’. Mặt phẳng (Q) thay đổi, vuông góc với SO tại điểm O 1 ( O 1 nằm giữa O và O') cắt khối nón theo thiết diện là hình tròn có bán kính x.Tính xtheo R và R’ để (Q) chia phần khối nón nằm giữa (P) và đáy hình nón thành hai phần có thể tích bằng nhau
A. x = R 3 + R ' 3 6 3
B. x = R 3 + R ' 3 4 3
C. x = R 3 + R ' 3 3 3
D. x = R 3 + R ' 3 2 3
Cho một hình nón đỉnh S có chiều cao bằng 8cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có đường sinh bằng 4cm. Tính thể tích của khối nón (N).
A. 768 125 π cm 3
B. 786 125 π cm 3
C. 2304 125 π cm 3
D. 2358 125 π cm 3
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36