Chọn B.
Phương pháp : Tính bán kính đáy và chiều cao hình trụ sau đó áp dụng công thức tính thể tích khối trụ.
Chọn B.
Phương pháp : Tính bán kính đáy và chiều cao hình trụ sau đó áp dụng công thức tính thể tích khối trụ.
Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng a 2 ta được thiết diện là một hình vuông. Tính thể tích khối trụ
A. π a 3 3 4
B. π a 3 3
C. π a 3
D. 3 π a 3
Cho hình trụ có bán kính đáy bằng R và chiều cao bằng 3 R 2 Mặt phẳng α song song với trục của hình trụ và cách trục một khoảng bằng R 2 Diện tích thiết diện của hình trụ cắt bởi mặt phẳng α là:
A. 2 R 2 3 3
B. 3 R 2 3 2
C. 3 R 2 2 2
D. 2 R 2 2 3
Cho hình trụ có bán kính đáy bằng a 2 . Cắt hình trụ bởi một mặt phẳng, song song với trụ của hình trụ và cách trục của hình trụ một khoảng bằng a 2 ta được thiết diện là một hình vuông. Tính thể tích V của khối trụ đã cho.
A. V = π a 3 3
B. V = π a 3 7 3
C. V = 2 π a 3 7
D. V = π a 3
Cho hình trụ có diện tích toàn phần là 4 π và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Thể tích khối trụ đã cho bằng
A. 4 π 6 9
B. π 6 12
C. π 6 9
D. 4 π 9
Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng a 2 ta được thiết diện là một hình vuông. Diện tích xung quanh S x q của hình trụ bằng
A. S x q = π 3 a 2 .
B. S x q = π 3 a 2 2 .
C. S x q = 2 π 3 a 2 .
D. S x q = 2 π 3 + 1 a 2 .
Một hình trụ có diện tích xung quanh bằng 4 π thiết diện qua trục là hình vuông. Một mặt phẳng α song song với trục, cắt hình trụ theo thiết diện là tứ giác ABB’A’, biết một cạnh của thiết diện là một dây cung của đường tròn đáy của hình trụ và căng một cung 120 ° . Tính diện tích thiết diện ABB’A’?
A. 3 2
B. 3
C. 2 3
D. 2 2
Một hình trụ có diện tích xung quanh là 4 π thiết diện qua trục là hình vuông. Một mặt phẳng α song song với trục, cắt hình trụ theo thiết diện ABB’A’ biết một cạnh của thiết diện là một dây của đường tròn đáy hình trụ và căng một cung 1200. Diện tích thiết diện ABB’A’ bằng
A. 3
B. 2 3
C. 2 2
D. 3 2
Cho hình trụ có bán kính bằng a. Một mặt phẳng đi qua các tâm của hai đáy và cắt hình trụ theo thiết diện là hình vuông. Thể tích của hình trụ bằng
A. 2 a 3
B. π a 3
C. 2 π a 3
D. 2 π a 3 3
Cắt một khối trụ bởi một mặt phẳng ta được một khối (H) như hình vẽ bên. Biết rằng thiết diện là một hình elip có độ dài trục lớn bằng 10, khoảng cách từ một điểm thuộc thiết diện gần mặt đáy nhất và điểm thuộc thiết diện xa mặt đáy nhất tới mặt đáy lần lượt là 8 và 14. (xem hình vẽ). Tính thể tích của hình (H)
A. V H = 176 π
B. V H = 275 π
C. V H = 192 π
D. V H = 740 π