\(P=x^2+y^2+\frac{33}{xy}\)
\(\ge\frac{\left(x+y\right)^2}{2}+\frac{33}{\frac{\left(x+y\right)^2}{4}}\)
\(\ge\frac{6^2}{2}+\frac{33}{\frac{6^2}{4}}=\frac{65}{3}\)
\("="\Leftrightarrow x=y=3\)
I'm here :))
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) \(\Leftrightarrow\left(x-y\right)^2\ge0\)
Và \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x-y\right)^2\ge0\)