cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
cho các số thực dương x,y,z thỏa mãn điều kiện \(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\) =3030 . tính giá trị của biểu thức \(A=x^2+y^2+z^2\)
Cho x,y là các số thực thỏa mãn : (x+\(\sqrt{x^2+\sqrt{2020}}\))( y+ \(\sqrt{y^2+\sqrt{2020}}\)) =\(\sqrt{2020}\)
Tìm Min M=9x4+7y4-12x2+4y2+5
bài 1:
M = \(\frac{x\sqrt{x}}{\sqrt{xy}-2y}-\frac{2x\sqrt{x}+x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}\cdot\frac{x-1}{x+\sqrt{x}-2}\)
với x > 0 , y > 0 , x # 1 , x # 4y .
1, rút gọn
2, Biết M=1 . TÌM giá trị nhỏ nhất của N =\(x^2y-2\sqrt{2}\cdot\left(3x+\sqrt{y}\right)+2020\)
xin các bạn giúp mình bài này với ạ !
\(\sqrt{x+1}+\sqrt{y+1}=\sqrt{2\left(x-y\right)^2+10x-6y+8}\)
tìm giá trị nhỏ nhất của
\(P=x^4+y^2-5\left(x+y\right)+2020\)
please help me <3
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
1) Cho các số thực dương x,y,z thỏa mãn điều kiện x\(\sqrt{2020-y^2}\) + y\(\sqrt{2020-z^2}\) +z\(\sqrt{2023-x^2}\)=3030. Tính giá trị vủa biểu thức A=x\(^2\)+\(y^2\)+\(z^2\)
Cho x,y,z>0 thỏa mãn x+y+z=2. Tìm giá trị lớn nhất của P=\(\sqrt{2x}+yz+\sqrt{2y}+xz+\sqrt{2z}+xy\)xy
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố