Gọi ... ( tự ghi )
\(1+2+3+...+n=\overline{aaa}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)}{2}=3.37.a\)
\(3.37.a⋮37\)\(\Rightarrow\)\(\frac{n\left(n+1\right)}{2}⋮37\)\(\Rightarrow\)\(n\left(n+1\right)⋮37\)
+) Với \(n=37\)\(\Rightarrow\)\(\frac{n\left(n+1\right)}{2}=\frac{37\left(37+1\right)}{2}=\frac{1406}{2}=703\) ( loại )
+) Với \(n+1=37\)\(\Rightarrow\)\(\frac{n\left(n+1\right)}{2}=\frac{36.37}{2}=\frac{1332}{2}=666\) ( thỏa mãn )
\(\Rightarrow\)\(\hept{\begin{cases}a=6\\n=36\end{cases}}\)
...