Nếu một khối hộp chữ nhật có độ dài các đường chéo của các mặt lần lượt là 5 ; 10 ; 13 thì thể tích khối hộp chữ nhật đó bằng:
A. 6
B. 5
C. 4
D. 8
Một hình hộp chữ nhật có ba kích thước là a, b, c. Thể tích V của khối hộp chữ nhật đó bằng
A.(a+b)c
B. 1 3 a b c
C. abc
D.(a+c)b
Một hình hộp chữ nhật có ba kích thước a , b , c . là V Thể tích của khối hộp chữ nhật đó bằng
A. a + c b .
B. a b c .
C. a + b c .
D. 1 3 a b c .
Tính thể tích V của khối hộp chữ nhật có đáy là hình vuông cạnh bằng 6 và chiều cao bằng 5.
A. V=180
B. V=50
C. V=150
D. V=60
Tính thể tích V của khối hộp chữ nhật có đáy là hình vuông cạnh bằng 6 và chiều cao bằng 5.
A. 60
B. 180
C. 50
D. 150
Cho hình hộp ABCD.A’B’C’D’ có diện tích các mặt (ABCD), (ABB’A’) (ADD’A’) lần lượt bằng 20 c m 2 , 28 c m 2 , 35 c m 2 . Tính thể tích V của khối hộp chữ nhật ABCD.A’B’C’D’
A. 120 c m 3
B. 160 c m 3
C. 130 c m 3
D. 140 c m 3
Gọi a, b, c lần lượt là ba kích thước của một khối hộp chữ nhật (H) và V là thể tích của khối hộp chữ nhật (H). Khi đó V được tính bởi công thức:
A. V = a b c
B. V = 1 3 a b c
C. V = 1 2 a b c
D. V = 3 a b c
Cho hình hộp chữ nhật ABCD.A' B' C' D' có tổng diện tích của tất cả các mặt là 36, độ dài đường chéo AC' bằng 6. Hỏi thể tích của khối hộp lớn nhất là bao nhiêu?
A. 8
B. 8 2
C. 16 2
D. 24 3
Cho biết thể tích của một khối hộp chữ nhật là V, đáy là hình vuông cạnh a. Khi đó diện tích toàn phần của hình hộp bằng
A. S t p = 2 2 V a + a 2
B. S t p = 2 V a + a 2
C. S t p = 2 V a 2 + a
D. S t p = 4 V a 2 + a