ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)
A=14+2^3.14+...+2^57.14
A=14.(1+2^3+...+2^57)\(⋮\)14
=> ĐPCM
chia hết cho 2 và7 nhóm lại sẽ chia hết cho 7
\(A=2+2^2+2^3+2^4+.....+2^{57}+2^{58}+2^{59}+2^{60}.\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=14+\left[2^3\left(2+2^3+2^3\right)\right]+....+\left[2^{57}\left(2+2^2+2^3\right)\right]\)
\(=14+2^3\cdot14+....+2^{57}\cdot14\)
\(=14\left(1+2^3+....+2^{57}\right)\)
\(\Rightarrow A⋮14\)
A = ( 2+22+23 ) + (24+25+26)+.....+(258+259+260)
A= 14 +24.(2+22+23)+....+258.(2+23+24)
A=14+24.14+....+258.14
A=14.(1+24+...+258)
=>A chia hết cho 14