\(C>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -1\end{matrix}\right.\)
Vậy .......
b) Ta có: C<1
nên C-1<0
\(\Leftrightarrow\dfrac{x-2}{x+1}-1< 0\)
\(\Leftrightarrow\dfrac{x-2-x-1}{x+1}< 0\)
\(\Leftrightarrow\dfrac{-3}{x+1}< 0\)
\(\Leftrightarrow x+1>0\)
hay x>-1
c) Để \(C=\dfrac{1}{4}\) thì \(\dfrac{x-2}{x+1}=\dfrac{1}{4}\)
\(\Leftrightarrow4x-8-x-1=0\)
\(\Leftrightarrow3x=9\)
hay x=3
Ta có: C>0
nên \(\left[{}\begin{matrix}x-2>0\\x+1< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -1\end{matrix}\right.\)