\(C=3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+3^{97}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{97}\right)\)
\(=40\left(3+3^5+...+3^{97}\right)⋮40\left(đpcm\right)\)
C = 3 + 32 + 34 + ... + 3100
= (3 + 32) + (34 + 36) + ... + (398 + 3100)
= 3(1 + 3) + 34(1 + 32) + ... + 398(1 + 32)
= 3.4 + 34.10 + ... + 398.10
= 3.4 + 10(34 + ... + 398)
Ta có: \(\hept{\begin{cases}3.4⋮4\\10\left(3^4+...+3^{98}\right)⋮10\end{cases}}\)=> C \(⋮\)40 (đpcm)
Mình ko biết bạn viết đề đúng ko nữa
Nhưng mình làm theo đề bn viết
Nếu sai thì ko phải do mình mà do bn viết sai đề nhé!
đúng là đề sai mình ko làm được. Lên lớp cô bảo đúng là đề sai