\(C=1-2^2+3^2-4^2+...+2013^2-2014^2+2015^2\)
\(\Leftrightarrow C=2015^2+\left(1-2014^2\right)-\left(2^2-2013^2\right)+\left(3^2-2012^2\right)-...\)
\(\Leftrightarrow C=2015^2+\left(1+2014\right)\left(1-2014\right)-\left(2+2013\right)\left(2-2013\right)+\left(3+2012\right)\left(3-1012\right)-...\)\(\Leftrightarrow C=2015^2+\left[2015.\left(-2013\right)\right]-\left[2015.\left(-2013\right)\right]+...\)
\(\Leftrightarrow C=2015^2\)
(?)
C=(1-2)(1+2)+(3-4)(3+4)+...+(2013-2014)(2013+2014)+2015^2
=2015^2-(1+2+3+...+2013+2014)
=2015^2-2014*2013/2
=2033134