\(b,x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(x^2+3x=z\)
Khi đó ,có : \(z\left(z+2\right)+1\)
\(=z^2+2z+1\)
\(=\left(z+1\right)^2\)
\(=\left(x^2+3x+1\right)^2\)
b) x(x+1)(x+2)(x+3)+1
= [x(x+3)] [(x+1)(x+2)] +1
= (x2 + 3x)(x2+2x+x+2)+1
= (x2+3x)(x2+3x+2)+1 (**)
Đặt x2+3x+1=a. Khi đó (**) có dạng:
(a-1)(a+1)+1
= a2-1+1
= a2
Trả lại ẩn cũ ta được:
x2+3x+1