\(x^4-3x+2=\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(\Leftrightarrow x^4-3x+2=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(\Leftrightarrow x^4-3x+2=x^4+\left(b-1\right)x^3+\left(a-b\right)x^2+\left(-2-a\right)x+2\)
\(\Leftrightarrow x^4+0x^3+0x^2-3x+2=x^4+\left(b-1\right)x^3+\left(a-b\right)x^2+\left(-2-a\right)x+2\)
Ta có: \(\left\{{}\begin{matrix}b-1=0\\a-b=0\\-2-a=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=b\\a=1\end{matrix}\right.\)
\(\Leftrightarrow a=b=1\)
Vậy: ...