Tập hợp các điểm M biểu diễn số phức z thỏa mãn điều kiện z - 2 + z + 2 = 6 là đường elip E . Phương trình đường elip E là
A. x 2 5 + y 2 4 = 1
B. x 2 9 + y 2 5 = 1
C. x 2 9 + y 2 4 = 1
D. x 2 36 + y 2 5 = 1
Cho số phức z thỏa mãn z - 2 + i z ¯ - 2 - i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ - 2 + 3 i là đường tròn có tâm I(a;b) và bán kính c. Giá trị của a+b+c bằng
A. 17
B. 20
C. 10
D. 18
Cho số phức z thỏa mãn z − 2 + i z ¯ − 2 − i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ − 2 + 3 i là đường tròn tâm I a ; b và bán kính c. Giá trị của a + b + c bằng
A. 10
B. 18
C. 17
D. 20
Cho số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
A. 7
B. 20
C. 2 5
D. 7
Cho số phức z thỏa mãn z - 2 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 - i ) z + i là một đường tròn. Tính bán kính r của đường tròn đó
A. 2 2
B. 4
C. 2
D. 2
Trên mặt phẳng Oxyz tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện z - 2 + z + 2 = 6 là
A. E l í p x 2 9 + y 2 5 = 1
B. Đ ư ờ n g t h ẳ n g y = 6
C. ( 0 ; 2 ) , ( 0 ; - 2 )
D. Đ ư ờ n g t r ò n t â m ( 0 ; 2 ) b á n k í n h b ằ n g 6
Cho các số phức z thỏa mãn z - 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = 1 + i 3 z + 2 là một đường tròn. Tính bán kính r của đường tròn đó.
A. r=25
B. r=4
C. r=9
D. r=16
Trong mặt phẳng tọa độ, tập hợp các điểm M x ; y biểu diễn của số phức z = x + y i x ; y ∈ ℝ thỏa mãn z + 1 + 3 i = z - 2 - i là
A. Đường tròn tâm O bán kính R = 1
B. Đường tròn đường kính AB với A - 1 ; - 3 và B 2 ; 1
C. Đường trung trực của đoạn thẳng AB với A - 1 ; - 3 và B 2 ; 1
D. Đường thẳng vuông góc với đoạn AB tại A với A A - 1 ; - 3 , B 2 ; 1
Cho số phức z thỏa mãn 5 z + i = 5 - i z biết rằng tập hợp điểm biểu diễn cho số phức w thỏa mãn w ( 1 - i ) = ( 6 - 8 i ) z + 3 i + 2 là một đường tròn. Xác định tọa độ tâm I của đường tròn đó.
A. I(-1;5)
B. I (1; -5)
C. I = ( - 1 2 ; 5 2 )
D. I = ( 1 2 ; - 5 2 )