Đáp án A
Nhận thấy S 1 là diện tích hình phẳng giới hạn bởi parabol y = 1 24 x 2 và phần elip nằm phía trên trục hoành.
Ta có phương trình hoành độ giao điểm của parabol y = 1 24 x 2 và elip x 2 16 + y 2 1 = 1 là
Đáp án A
Nhận thấy S 1 là diện tích hình phẳng giới hạn bởi parabol y = 1 24 x 2 và phần elip nằm phía trên trục hoành.
Ta có phương trình hoành độ giao điểm của parabol y = 1 24 x 2 và elip x 2 16 + y 2 1 = 1 là
Biết rằng parabol y = 1 24 x 2 chia hình phẳng giới hạn bởi elip có phương trình x 2 16 + y 2 1 = 1 thành hai phần có diện tích lần lượt là S1,S2với S1<S2. Tỉ số của S 1 S 2 bằng
Cho (H) là hình phẳng giới hạn bởi parabol y = 3 2 x 2 và nửa đường elip có phương trình y = 1 2 4 - x 2 (với - 2 ≤ x ≤ 2 ) (phần tô đậm trong hình vẽ). Diện tích của (H) bằng:
A. 2 π + 3 6
B. 2 π + 3 12
C. 2 π - 3 6
D. 4 π + 3 6
Gọi S là số đo diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số y = 2 x 2 + 3 x + 1 và y = x 2 − x − 2. Tính cos π S
A. 0
B. − 2 2 .
C. 2 2 .
D. 3 2 .
Tính diện tích S hình phẳng giới hạn bởi các đường y = x 2 + 1 ; x=-1; x=2 và trục hoành.
A. S = 6
B. S = 13/6
C. S = 13.
D. S = 16.
Giả sử S = a ln b c - 1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x + 1 x - 2 với các trục tọa độ. Hỏi mệnh đề nào là đúng?
Cho hàm số y = x - m 2 x + 1 (với m là tham số khác 0) có đồ thị là (C). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn S = 1?
A. Hai.
B. Ba.
C. Một.
D. Không
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Cho hàm số bậc ba y=f(x) có đồ thị (C) như hình vẽ. Biết đồ thị hàm số đã cho cắt trục Ox tại 3 điểm có hoành độ x 1 , x 2 , x 3 theo thứ tự lập thành cấp số cộng và x 3 - x 1 = 2 3 . Gọi diện tích hình phẳng giới hạn bởi (C) và trục Ox là S. Diện tích S 1 của hình phẳng giới hạn bởi các đường y = f x + 1 , y = - f x - 1 , x = x 1 và x = x 3 bằng
A. .
B. .
C. .
D. .
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x - 1 x + 1 và các trục tọa độ. Khi đó giá trị của S bằng
A. S = ln2 - 1 (đvdt)
B. S = 2ln2 - 1 (đvdt)
C. S = 2ln2 + 1 (đvdt)
D. S = ln2 + 1 (đvdt)