Trong không gian Oxyz, cho điểm M nằm trên mặt phẳng (Oxy) sao cho M không trùng với gốc tọa độ và không nằm trên hai trục Ox, Oy khi đó tọa độ điểm M là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).
A. I = 2 13
B. I = 2 41
C. I= 2 26
D. I= 2 11
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua 3 điểm trên và có tâm nằm trêm mặt phẳng (Oxy).
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x-y+2z-6=0 và điểm M(1;-1;2). Phương trình mặt cầu tâm nằm trên trục Ox và tiếp xúc với mặt phẳng (P) tại điểm M là
Trong không gian cho hệ trục tọa độ Oxyz, tất cả các điểm M nằm trên Oz có khoảng cách đến mặt phẳng ( P ) : 2 x - y - 2 z - 2 = 0 bằng 2 là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;5). Mặt phẳng (P) đi qua điểm M và cắt trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Thể tích của tứ diện OABC là
A. 10 6
B. 450
C. 10
D. 45
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;5). Số mặt phẳng đi qua M và cắt các trục Ox, Oy, Oz tại A, B, C sao cho OA = OB = OC (A, B, C không trùng với gốc tọa độ O) là:
A. 8
B. 3
C. 4
D. 1
Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức 1 O A 2 + 1 O B 2 + 1 O C 2 có đạt giá trị nhỏ nhất
A. P : x + 2 y + 3 z − 14 = 0
B. P : x + 2 y + 3 z − 11 = 0
C. P : x - y - 3 z − 14 = 0
D. P : x + y + 3 z − 14 = 0