Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x 0 . Giá trị của a + b - x 0 bằng:
A. 100
B. 30
C. 150
D. 50
Biết rằng phương trình 3 + 5 2 + 3 3 - 5 2 = 2 x + 2 có hai nghiệm phân biệt là x 1 > x 2 . Nghiệm x 1 có dạng log a + b 5 2 9 , với a; b nguyên dương. Tính S = a4 + 10ab
A. 2611
B. 2681
C. 2422
D. 2429
Biết rằng phương trình 2 x 2 - 2 x - 1 = 3 có hai nghiệm phân biệt là x1 ; x2 .Tổng x 1 2 + x 2 2 có dạng a + b log2 3 , với a ; b nguyên . Tính S = a2 + 5ab.
A. 45
B. 96
C. 39
D. 126
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Cho S là tập hợp các giá trị thực của tham số m để phương trình 2 - x + 1 - x = m + x - x 2 có hai nghiệm phân biệt. Tổng các số nguyên trong S bằng
A. 11.
B. 0.
C. 5.
D. 6.
Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d.
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .
Cho hàm số f(x)=a x 2 -2(a+1)x+a+2 (a ≠ 0)
Tính tổng S và tích P của các nghiệm của phương trình f(x) =0. Khảo sát sự biến thiên và vẽ đồ thị của S và P theo a.
Cho phương trình 9 x + x - 12 . 3 x + 11 - x = 0 . Phương trình trên có hai nghiệm x 1 , x 2 . Giá trị S = x 1 + x 2 bằng bao nhiêu?
A. S = 0
B. S = 2
C. S = 4
D. S = 6