làm lại cho dễ hiểu.
Ta có:\(\hept{\begin{cases}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{cases}}\)
Từ (1) \(\Rightarrow a=2016-3c\)
Lấy (2)-(1),ta được:
\(2b-3c=1\)
\(\Rightarrow b=\frac{1+3c}{2}\)
Khi đó:\(P=a+b+c\)
\(=\left(2016-3c\right)+\frac{1+3c}{2}+c\)
\(=\left(2016+\frac{1}{2}\right)+\frac{-6c+3c+2c}{2}\)
\(=2016\frac{1}{2}-\frac{c}{2}\)
Vì a,b,c không âm nên:
\(P=2016\frac{1}{2}-\frac{c}{2}\)
\(\le2016\frac{1}{2}\)
\(\Rightarrow P_{MAX}=2016\frac{1}{2}\)tại \(c=0\)