Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pham trung thanh

Biết \(ad-bc=1\)

CMR: \(S=a^2+b^2+c^2+d^2+ac+bd\ge\sqrt{3}\)

Vũ Thu Mai
22 tháng 9 2017 lúc 20:36

ta có \(\left(ad-bc\right)^2+\left(ac+bd\right)^2=a^2d^2-2abcd+b^2c^2+a^2c^2+2abcd+b^2d^2\)

        \(=a^2d^2+a^2c^2+b^2d^2+b^2c^2=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

=> \(1+\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Áp dụng bất đẳng thức cô si ta có 

\(\left(a^2+b^2\right)+\left(c^2+d^2\right)\ge2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}=2\sqrt{1+\left(ac+bd\right)^2}\)

=> \(a^2+b^2+c^2+d^2+ac+bd\ge2\sqrt{\left(ac+bd\right)^2+1}+ac+bd\)

đặt \(ac+bd=m\left(m\ge0\right)\)

=> \(S\ge m+2\sqrt{m^2+1}\)

ta cần chắng minh \(m+2\sqrt{m^2+1}\ge\sqrt{3}\Leftrightarrow m^2+4\left(m^2+1\right)+4m\sqrt{m^2+1}\ge3\)

                            \(\Leftrightarrow m^2+1+4m^2+4m\sqrt{m^2+1}\ge0\Leftrightarrow\left(\sqrt{m^2+1}+2m\right)^2\ge0\) (luôn đúng)

=> \(S\ge\sqrt{3}\) (ĐPCM)


Các câu hỏi tương tự
Nguyễn Thu Trang
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
Bùi Khắc Tuấn Khải
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Ngoc Anhh
Xem chi tiết
shinku
Xem chi tiết