Cho a,b,c khác 0 thõa mãn \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\) tính giá trị biểu thức \(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
Cjo a,b,c khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a
Tính giá trị biểu thức M=ab+bc+ca/a^2+b^2+c^2
cho các số dương a,b,c thỏa mãn :
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
tính giá trị của biểu thức M =\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
cho ba số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
Tìm giá trị nhỏ nhất của biểu thức P = a / bc + 2b / ca + 5c / ab , trong đó a,b,c là các số thực dương thỏa mãn a^2 + b^2 + c^2 = 6
cho \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) trong đó a,b,c đôi một khác 0. tính giá trị biểu thức:
P= \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a (với giả thiết các tỉ số đều có nghĩa).
Tính giá trị của biểu thức M=ab+bc+ca / a^2+b^2+c^2
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2