Biết ∫ 3 4 d x ( x + 1 ) ( x - 2 ) = a ln 2 + b ln 5 + c , với a,b,c là các số hữu tỉ. Tính S = a - 3b + c
A. S = 3
B. S = 2
C. S = -2
D. S = 4
Biết ∫ π 4 π 3 cos 2 x + sin x cos x + 1 cos 4 x + sin x cos 3 x d x = a + b ln 2 + c ln ( 1 + 3 ) ,
với a, b, c là các số hữu tỉ. Giá trị của abc bằng:
A. 0
B. -2
C. -4
D. -6
Biết ∫ 1 3 d x 1 + x + 1 + x 2 = a 3 + b 2 + c + 1 2 ln ( 3 2 - 3 ) với a, b, c là các số hữu tỷ.
Tính P = a + b + c.
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x ; f ( 1 ) = ln 1 2 Biết ∫ 1 2 x 2 + 1 f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27/2
B. 1/6
C. 7/6
D. -3/2
Cho hàm số y = f ( x ) liên tục trên R \ { - 1 ; 0 } thỏa mãn f ( 1 ) = 2 ln 2 + 1 , x ( x + 1 ) f ' ( x ) + ( x + 2 ) f ( x ) = x ( x + 1 ) , ∀ x ∈ R \ { - 1 ; 0 } Biết f ( 2 ) = a + b ln 3 với a, b là hai số hữu tỉ. Tính T = a 2 - b
Tích phân ∫ 1 2 x ln x d x ( x 2 + 1 ) 2 = a ln 2 + b ln 3 + c ln 5 (với a,b,c là các số hữu tỉ). Tính tổng a+b+c
Biết ∫ 1 2 x ln ( x 2 + 1 ) d x = a ln 5 + b ln 2 + c với a, b, c là các số hữu tỉ. Tính P = a + b + c.
Biết ∫ π 4 π 3 1 cos 4 x + sin x co s 3 x d x = a - b + c ln 2 + d ln ( 1 + 3 ) với a,b,c,d là các số hữu tỉ. Giá trị của abcd bằng
A. 0
B. -36
C. -24
D. -6
hàm số f ( x ) = ln 1 - 1 x 2 . Biết rằng f ( 2 ) + F ( 3 ) + . . . + f ( 2018 ) = ln a - ln b + ln c - ln d với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và a<b<c<d. Tính P=a+b+c+d
A. 1986
B. 1698
C. 1689
D. 1968