giải pt
a) \(\sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
b) \(3tan^3x-tanx+\frac{3\left(1+sinx\right)}{cos^2x}-8cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=0\)
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) B=\(\left(\frac{1-tan^2x}{tanx}\right)^2-\left(1+tan^2x\right)\left(1+cot^2x\right)\)
b) C= \(\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
đây là toán lớp 10 mọi người giải giúp em với,em đang ôn chuẩn bị thi nhưng bài này chưa biết làm
tanx - sinx/sin^3x=1/cox(1 + cosx)
sinx . sin (pi/3 - x) . sin(pi/3 + x)=1/4sin3x
Cm biểu thức \(\left(\frac{1-tan^2x}{tanx}\right)^2-\left(1+tan^2x\right)\left(1+cot^2x\right)\)không phụ thuộc vào biến
Cho 0^{\circ} < x < 90^{\circ} . Chứng minh đẳng thức sau :
\left ( \sqrt{\frac{1+sinx}{1-sinx}}-\sqrt{\frac{1-sinx}{1+sinx}} \right )^{2}= 4tan^{2}x |
giai pt sau : \(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right).cosx=0\)
Cho \(0^{\circ}\) < x < \(90^{\circ}\). Chứng minh các đẳng thức sau :
\(\left ( \sqrt{\frac{1+sinx}{1-sinx}}-\sqrt{\frac{1-sinx}{1+sinx}} \right )^{2}= 4tan^{2}x\)
giải pt sau :
\(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right).cosx=0\)
Tính :
\(B=\frac{\sin^2\alpha.\cos\left(\frac{\alpha}{2}\right)-\cot\left(\frac{\alpha}{3}\right)}{\frac{1}{\sqrt{2}}\sin\alpha+\sqrt{2}\tan\left(\frac{\alpha}{2}\right)}\) với \(\tan\alpha=\frac{\sin^267^o23'.\cos25^o41'}{\sin45^o16'+\cos^267^o29'}\text{ và }0^o