a)\(333^{444}=\left(333^4\right)^{111};444^{333}=\left(444^3\right)^{111}\)
Lại có \(333^4=3^4.111^4=81.111^4;444^3=4^3.111^3=64.111^3\)
Nên \(333^4>444^3\)
Suy ra \(333^{444}>444^{333}\)
b)\(5^{202}=\left(5^2\right)^{101}=25^{101};2^{505}=\left(2^5\right)^{101}=32^{101}\)
Suy ra \(2^{505}>5^{202}\)
a, Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
b. 5^202 < 2^505