Gọi giá tiền mỗi quyển vở loại I, loại II, loại III lần lượt là a(đồng),b(đồng),c(quyển)
(ĐK: \(a,b,c\in Z^+\))
Theo đề, ta có: 10a=12b=15c
=>\(\dfrac{10a}{60}=\dfrac{12b}{60}=\dfrac{15c}{60}\)
=>\(\dfrac{a}{6}=\dfrac{b}{5}=\dfrac{c}{4}\)
Giá tiền của 1 quyển vở loại I và 2 quyển vở loại III nhiều hơn giá tiền 2 quyển vở loại II là 4000 đồng nên a+2c-2b=4000
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{5}=\dfrac{c}{4}=\dfrac{a+2c-2b}{6+2\cdot4-2\cdot5}=\dfrac{4000}{4}=1000\)
=>\(\left\{{}\begin{matrix}a=6\cdot1000=6000\left(nhận\right)\\b=5\cdot1000=5000\left(nhận\right)\\c=4\cdot1000=4000\left(nhận\right)\end{matrix}\right.\)
Vậy: giá tiền mỗi quyển vở loại I, loại II, loại III lần lượt là 6000(đồng),5000(đồng),4000(quyển)