Bài9:ChotamgiácABCvuôngtại A có ABAC.KẻđườngcaoAH.Gọi D, E lầnlượtlà hình chiếu của H lên AB, AC. a) Cho BH = 3,6cm,CH = 6,4cm. Tính AB, góc ACB b) Chứng minh: AD.AB = AE.AC và AB3 = AC3 BD CE HÌNH HỌC 9 c) Giả sử diện tích của tam giác ABC gấp 2 lần diện tích của tứ giác AEHD. Chứng minh tam giác ABC vuông cân.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=3.6\cdot10=36\)
hay AB=6(cm)
Xét ΔABH vuông tại H có
\(\cos\widehat{ABH}=\dfrac{BH}{AB}=\dfrac{3.6}{6}=\dfrac{3}{5}\)
\(\Leftrightarrow\widehat{ABH}\simeq53^0\)
\(\Leftrightarrow\widehat{ACB}=37^0\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)(đpcm)