a ) \(x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b ) \(a^6-b^3=\left(a^2\right)^3-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
c ) \(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
d ) \(8z^3+27=\left(2z\right)^3+3^3=\left(2z+3\right)\left(4z^2-6z+9\right)\)
a) x3 + 8y3 = x3 + (2y)3 = (x+2y)(x2+2xy+4y2)
b) a6 - b3 = (a2)3 - b3 = (a2-b)(a4 + a2b + b2)
c) 8y3 - 125 = (2y)3 - 53 = (2y - 5)(4y2 + 10y + 25)
d) 8x3 + 27 = (2z)3 + 33 = (2z + 3)(4z2 - 6x + 9)
a) \(x^3+8y^3\)
\(=x^3+\left(2y\right)^3\)
\(=\left[x+2y\right]\left[x^2-x.2y+\left(2y\right)^2\right]\)
\(=\left[x^3+8y^3\right]\left[x^2-2xy+4y^2\right]\)