a) Ta có: \(A=1+2+2^2+2^3+...+2^{29}\)
\(2A=2+2^2+2^3+2^4+...+2^{30}\)
Mà \(A=2A-A=2^{30}-1\)
b)Ta có: \(2^{30}=\left(2^2\right)^{15}=4^{15}=...4\) (số có tận cùng là 4 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.
Do vậy \(A=2^{30}-1=...4-1=...3\)
Áp dụng tính chất :Số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
Ta có: \(A=...3\) do đó A không phải là 1 số chính phương (đpcm)