Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

(bài hơi dài)

bài 1:

a,23-53:52+12.22

b,5[(85-35:7):8+90]-50

c,2.[(7-33:32):22+99]-100

d,27:22+54:53.24-3.25

e,(35.37):310+5.24-73:7

f,32.[(52-3):11]-24+2.103

g,(62007-62006):62006

h,(52001-52000):52000

i,(72005+72004):72004

j,(57+75).(68+86).(24-42)

k,(75+79).(54+56).(33.3)-92

l,[(52.23)-72.2):2].6-7.25.

giúp em vs ạ

 

 

456
30 tháng 8 2024 lúc 21:15

`a, 2^3 - 5^3 : 5^2 + 12 . 2^2`

` = 8 - 125 : 25 + 12 . 4`

` = 8 - 5 + 48`

` = 3 + 48`

` = 51`

`b, 5[( 85 - 35 : 7 ) : 8 +90] - 50`

` = 5[( 85 - 5) : 8 + 90 ] - 50`

` = 5[ 80 : 8 + 90] - 50`

` = 5[ 10 + 90 ] - 50`

` = 5 . 100 - 50`

` = 500 - 50`

` = 450`

`c, 2.[( 7 - 3^3 : 3^2 ) : 2^2 + 99] - 100`

` = 2.[( 7 - 27 : 9) : 4 + 99] - 100`

` = 2.[( 7 - 3) : 4 + 99] - 100`

` = 2.[ 4 : 4 + 99] - 100`

` = 2.[ 1 + 99] - 100`

` = 2 . 100 - 100`

` = 200 - 100`

` = 100`

`d, 2^7 : 2^2 + 5^4 : 5^3 . 2^4 - 3 . 2^5`

` = 128 : 4 + 625 : 125 . 16 - 3 . 32`

` = 32 + 5 . 16 - 96`

` = 32 + 80 - 96`

` = 112 - 96`

` = 16`

Tui hổng có tên =33
30 tháng 8 2024 lúc 21:16

\(a,2^3-5^3:5^2+12.2^2\)
\(=8-5^{3-2}+12.4\)
\(=8-5+48\)
\(=3+48\)
\(=51\)
\(b,5.\left[\left(85-35:7\right):8+90\right]-50\)
\(=5.\left[\left(85-5\right):8+90\right]-50\)
\(=5.\left[80:8+90\right]-50\)
\(=5.\left[10+90\right]-50\)
\(=5.100-50\)
\(=500-50\)
\(=495\)
\(c,2.\left[\left(7-3^3:3^2\right):2^2+99\right]-100\)
\(=2.\left[\left(7-3^{3-2}\right):4+99\right]-100\)
\(=2.\left[\left(7-3\right):4+99\right]-100\)
\(=2.\left[4:4+99\right]-100\)
\(=2.\left[1+99\right]-100\)
\(=2.100-100\)
\(=200-100\)
\(=100\)
\(d,2^7:2^2+5^4:5^3.2^4-3.2^5\)
\(=2^{7-2}+5^{4-3}.16-3.32\)
\(=2^5+5.16-96\)
\(=32+80-96\)
\(=112-96\)
\(=16\)
\(e,\left(3^5.3^7\right):3^{10}+5.2^4-7^3:7\)
\(=\left(3^{5+7}\right):3^{10}+5.16-7^{3-1}\)
\(=3^{12}:3^{10}+80-7^2\)
\(=3^{12-10}+80-49\)
\(=3^2+80-49\)
\(=9+80-49\)
\(=40\)
\(f,3^2.\left[\left(5^2-3\right):11\right]-2^4+2.10^3\)
\(=9.\left[\left(25-3\right):11\right]-16+2.1000\)
\(=9.\left[22:11\right]-16+2000\)
\(=9.2-16+2000\)
\(=18-16+2000\)
\(=2002\)
\(g,\left(6^{2007}-6^{2006}\right):6^{2006}\)
\(=\dfrac{6^{2007}-6^{2006}}{6^{2006}}\)
\(=\dfrac{6^{2006}.6-6^{2006}}{6^{2006}}\)
\(=\dfrac{6^{2006}.\left(6-1\right)}{6^{2006}}\)
\(=6-1\)
\(=5\)

456
30 tháng 8 2024 lúc 21:17

`e, (3^5 . 3^7) : 3^10 + 5 . 2^4 - 7^3 : 7`

` = 3^12 : 3^10 + 5 . 16  - 7^2`

` = 9 + 80 - 49`

` = 89 - 49 = 40`

456
30 tháng 8 2024 lúc 21:28

`f, 3^2 . [( 5^2 - 3) : 11] - 2^4 + 2 . 10^3`

` = 9 . [( 25 - 3) : 11] - 16 + 2 . 1000`

` = 9 . [ 22 : 11 ] - 16 + 2 . 1000`

` = 9 . 2 - 16 + 2 . 1000`

` = 18 - 16 + 2000`

` = 2 + 2000`

` = 2002`

Tui hổng có tên =33
30 tháng 8 2024 lúc 21:32

\(h,\left(5^{2001}-5^{2000}\right):5^{2000}\)
\(=\dfrac{5^{2001}-5^{2000}}{5^{2000}}\)
\(=\dfrac{5^{2000}.5-5^{2000}}{5^{2000}}\)
\(=\dfrac{5^{2000}.\left(5-1\right)}{5^{2000}}\)
\(=5-1\)
\(=4\)
\(i,\left(7^{2005}+7^{2004}\right):7^{2004}\)
\(=\dfrac{7^{2005}+7^{2004}}{7^{2004}}\)
\(=\dfrac{7^{2004}.7+7^{2004}}{7^{2004}}\)
\(=\dfrac{7^{2004}.\left(7+1\right)}{7^{2004}}\)
\(=7+1\)
\(=8\)
\(j,\left(5^7+7^5\right).\left(6^8+8^6\right).\left(2^4-4^2\right)\)
\(=\left(5^7+7^5\right).\left(6^8+8^6\right).\left(16-16\right)\)
\(=\left(5^7+7^5\right).\left(6^8+8^6\right).0\)
\(=0\)
\(k,\left(7^5+7^9\right).\left(5^4+5^6\right).\left(3^3.3\right)-9^2\)
\(=\left(7^5+7^9\right).\left(5^4+5^6\right).\left(3^{3+1}\right)-\left(3^2\right)^2\)
\(=\left(7^5+7^9\right).\left(5^4+5^6\right).3^4-3^4\)
\(=\left(7^5+7^9\right).\left(5^4+5^6\right).3^{4-4}\)
\(=\left(7^5+7^9\right).\left(5^4+5^6\right).0\)
\(=0\)
\(l,\left[\left(5^2.2^3\right)-7^2.2:2\right].6-7.2^5\)
\(=\left[\left(25.8\right)-49.2:2\right].6-7.32\)
\(=\left[200-98:2\right].6-224\)
\(=\left[200-49\right].6-224\)
\(=151.6-224\)
\(=906-224\)
\(=682\)


Các câu hỏi tương tự
hehehe
Xem chi tiết
Pham Trong Bach
Xem chi tiết
hehehe
Xem chi tiết
Phạm Nguyễn Bảo Trâm
Xem chi tiết
Nguyễn Thị Bảo Yến
Xem chi tiết
Trần Nguyễn Xuân Phát
Xem chi tiết
pham phuong thao
Xem chi tiết
Nguyễn Ngọc Phương Ngân
Xem chi tiết
Nguyen thi bích ngọc
Xem chi tiết
Phạm Minh Ngọc
Xem chi tiết