Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Ngô Minh

Bài 9. Cho ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H  BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng: a) ABE = HBE b) BE là đường trung trực của đoạn thẳng AH c) EK = EC d) Chứng minh AE < EC 

Nguyễn Tá Phát
8 tháng 3 2022 lúc 19:44

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Đạt Lê
8 tháng 3 2022 lúc 19:45

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Đạt Lê
8 tháng 3 2022 lúc 19:45

tick nha

Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 19:45

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có: ΔABE=ΔHBE

nên AB=HB; EA=EH

=>BE là đường trung trực của AH

c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó:ΔAEK=ΔHEC

Suy ra: EK=EC

d: Ta có: AE=EH

mà EH<EC

nên AE<EC


Các câu hỏi tương tự
Trương Công Phước
Xem chi tiết
Mây Phiêu Du
Xem chi tiết
Nguyễn Đỗ Khánh Trang
Xem chi tiết
Trần Thương
Xem chi tiết
Lộc Trần Duy
Xem chi tiết
Mây Phiêu Du
Xem chi tiết
Phan Nguyễn Cẩm Nguyên
Xem chi tiết
bùi ngọc mai
Xem chi tiết
what the fack
Xem chi tiết