Cho hình thoi ABCD có A nhọn. O là giao điểm AC, BD. Kẻ OM vuông góc với AB. P thuộc cạnh BC sao cho BP>BM. Qua A kẻ đường thẳng song song với MP, cắt CD tại Q. Chứng minh: PQ là tiếp tuyến của (O;OM).
MN giup em voi a. cam on nhieu a. em dang can gap
Giải hộ mình bài này với: Cho tam giác nhọn ABC nội tiếp đường tròn (O), có AB<AC. Kẻ các đường cao BE, CF. Gọi H là trực tâm, M là giao điểm của EF và AH. Vẽ đường kính AK cắt cạnh BC tại N.
a) Chứng minh tứ giác BFEC nội tiếp
b) Chứng minh HK song song với MN
c) Qua H vẽ đường thẳng cắt AB, AC lần lượt tại P, Q sao cho HP=HQ. Chứng minh HK vuông góc với PQ.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Moi ng giai giup minh bai nay vs
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng EF, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường trò
Cho tam giác ABC nhọn cân tại A. Điểm D trên cạnh BC sao cho góc ADB nhọn. Kẻ các tiếp tuyến CM, Cn tới đường tròn ngoại tiếp tam giác ADB. Các điểm P và Q lần lượt là trung điểm của CM và CN, PQ cắt BC tại E và AE cắt đường tròn ngoại tiếp tam giác ABC tại L. Chứng minh rằng LB/LC=EB/EC và EC/EB=ED/EC
: Cho tam giác ABC nhọn, nội tiếp (O). P thuộc cung nhỏ BC. AP cắt BC tại K. Q đối xứng với P qua BC sao cho Q nằm trong tam giác ABC. BQ cắt AC tại E. CQ cắt AB tại F.
a) Chứng minh: BKQF, KQEC nội tiếp
b) CMR: AF QE là tứ giác nội tiếp
c) AK cắt (AEF) tại L. Chứng minh: PQL=90 độ
d) P E cắt (O) tại R. BR cắt EF tại M. Chứng minh: ME = MF.
Cho tam giác ABC cân tại A. D, E là hai điểm thay đổi trên tia BC sao cho DE=BC ( D nằm giữa B và E). Đường vuông góc vói BC tại D cắt AB tại M và đường vuồn góc với BC tại E cắt AC tại N.
a. Chứng minh BM=CN
b. Chứng minh đường trung trực của MN luôn luôn đi qau một điểm cố định.
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của (O) cắt BC tại S. Gọi I là trung điểm của BC.
a) Chứng minh tứ giác SAOI nội tiếp
b) Vẽ dây cung AD vuông góc với SO tại H. AD cắt BC tại K. Chứng minh SD là tiếp tuyến của đường tròn (O)
c) Chứng minh SK.SI = SB.SC
d) Vẽ đường kính PQ đi qua điểm I (Q thuộc cung CD), SP cắt đường tròn (O) tại M. Chứng minh M, K, Q thẳng hàng