`#3107.101107`
`a)`
`2^x . 2^9 = 2^{1945}`
`2^x = 2^{1945} \div 2^9`
`2^x = 2^{1945 - 9}`
`2^x = 2^{1936}`
`x = 1936`
Vậy, `x = 1936`
`b)`
\(3^x+3^{x+1}+3^{x+2}=3159\\ 3^x+3^x\cdot3+3^x\cdot3^2=3159\\ 3^x\cdot\left(1+3+3^2\right)=3159\\ 3^x\cdot\left(4+9\right)=3159\\ 3^x\cdot13=3159\\ 3^x=243\\ 3^x=3^5\\ x=5\)
Vậy, `x = 5.`