Cho tam giác ABC, gọi Bx và Cy là các tia pg ngoài đỉnh B và C, vẽ AD vuông góc với Bx, AE vuông góc với Cy
a) Chứng minh DE//BC
b) Chứng minh chu vi tam giác ABC bằng 2DE
c) Từ A kẻ 4 đường thẳng vuông góc với 4 tia pg trong và ngoài tại đỉnh B,C. Chứng minh rằng chân 4 đường vuông góc ấy thẳng hàng
Cho tam giác ABC có ba góc nhọn. Gọi Bx và Cy lần lượt là 2 tia phân giác tại 2 góc ngoài tại đỉnh B và đỉnh C của tam giác ABC. Dựng AD vuông góc với Bx và AE vuông góc với Cy (D thuộc Bx và E thuộc Cy). AD và AE cắt BC tại P và Q.
a/ Chứng minh DE song song PQ
b/ So sánh chu vi tam giác ABC với DE
c/ Gọi M và N lần lượt là giao điểm của DE với các cạnh AB và AC. H và K lần lượt là chân các đường vuông góc hạ từ A và B xuống BC và AC. Chứng minh góc AHM + góc BKM = góc ANM
làm ơn giúp mk với, mk đang cần gấp!!!!!!
Bài 7: Cho tam giác ABC cân tại A, kẻ Bx vuông góc với BA , Cy vuông góc với CA . Bx và Cy cắt nhau tại D. Chứng minh:
tam giác ADB = tam giác ADC và AD vuông góc với BC
Cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa bờ BC kẻ tia Bx và Cy vuông góc với BC. Gọi M là điểm thuộc cạnh BC (M không trùng B và C). Đường thẳng vuông góc với AM tại A cắt Bx và Cy theo thứ tự ở D và E. a) Chứng minh: AM = AE b) Tính tổng số đo gócDME c) Lấy I nằm giữa A và D. Kẻ HE vuông góc với MI. Chứng minh HA là tia phân giác của góc EHI.
Bài 1: Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, gọi I là giao điểm của AH với DE. Kẻ DM vuông góc với IH, EL vuông góc với IH. Chứng minh:
a) Tam giác HBD= tam giác MAD
b) Tam giác HCA= tam giác LEA
c) ID=IE
Bài 2: Cho tam giác ABC có AB>AC. Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Gọi I là giao điểm của đường trung trực của BC và AD. Chứng minh:
a) Tam giác AIB= tam giác DIC
b) AI là tia phân giác của góc BAC
c) Kẻ IE vuông góc với AB. Chứng minh AE=\(\frac{1}{2}\) AD
Bài 6: (3 điểm)Cho tam giác ABC vuông tại A với AB < AC. Vẽ tia Bx sao cho tia BC là phân giác của góc ABx, vẽ CM vuông góc với Bx tại M. Gọi H là giao điểm của AM và BC.
a) So sánh góc ABC và góc ACB. Chứng minh ABC và MBC bằng nhau.
b) Chứng minh BC vuông góc AM và .
c) Chứng minh HM < HC.
Cho tam giác ABC cân tại A. Vẽ tia Bx vuông góc với AB. Vẽ tia Cy vuông góc với AC. M là giao điểm của Bx và Cy.
a) Chứng minh góc AMB bằng góc AMC
b) Chứng minh AM là đường trung trực của đoạn thẳng BC.
Bài 1: Cho tam giác ABC cân tại A có góc A< 90 độ. Tia Bx vuông góc AB cắt tia AC tại D , tia Cy vuông góc AC cắt tia AB tại E . Gọi giao điểm của hai tia Bx Cy là I . Chứng minh: a) AD =AE BD= CE, b) Tam giác EID cân, góc BAI= góc CAI c) BC // ED và AI vuông góc ED , d) Tìm điều kiện của tam giác ABC sao cho góc IED =30 độ
Bài 6: (3 điểm)Cho tam giác ABC vuông tại A với AB < AC. Vẽ tia Bx sao cho tia BC là phân giác của góc ABx, vẽ CM vuông góc với Bx tại M. Gọi H là giao điểm của AM và BC.
a) So sánh góc ABC và góc ACB. Chứng minh ABC và MBC bằng nhau.
b) Chứng minh BC vuông góc AM và .
c) Chứng minh HM < HC. giúp e với ạ