S=1+2+2^2+2^3+...+2^20
2.S=2+2^2+2^3+...+2^20+2^21
2.S-S=S=(2+2^2+2^3+....+2^21)-(1+2+2^2+...+2^20)
S=2^21-1
bây giờ so sánh 2^21-1 với 5.2^19
mà 2^21-1=2^19.2^2-1 hay 2^19 .4 -1 <2^19.5
=>S<2^19.5
\(S=1+2+2^2+2^3+\cdots+2^{20}\)
=> \(2S=2+2^2+2^3+2^4+\cdots+2^{21}\)
=> \(2S-S=\left(2+2^2+2^3+2^4+\cdots+2^{21}\right)-\left(1+2+2^2+2^3+\ldots+2^{20}\right)\)
=>\(S=2^{21}-1\)
Mà \(2^{21}-1=2^{19}.2^2-1\) hay \(2^{19}.4-1<2^{19}.5\)
=>\(S<2^{19}.5\)
Ta có: \(S=1+2+2^2+\cdots+2^{20}\)
=>\(2S=2+2^2+2^3+\cdots+2^{21}\)
=>\(2S-S=2+2^2+\cdots+2^{21}-1-2-\cdots-2^{20}\)
=>\(S=2^{21}-1\)
\(2^{21}-1-5\cdot2^{19}=2^{19}\left(2^2-5\right)-1=-2^{19}-1<0\)
=>\(S-5\cdot2^{19}<0\)
=>\(S<5\cdot2^{19}\)