Bài 7: Cho nửa đường tròn (O) đường kính AB=2R. Điểm C cố định trên nửa đường tròn. Điểm M thuộc cung AC (M khác A,C). Hạ MH vuông góc AB tại H. Nối MB cắt CA tại E. Hạ EI vuông góc AB tại I. Gọi K là giao điểm của AC và MH. a) Chứng minh: BHKC, AMEI là các tứ giác nội tiếp. b) Chứng minh: AK.AC =AM2. c) Chứng minh: AE.AC + BE.BM không phụ thuộc vào vị trí của điểm M. d) Chứng minh: điểm E cách đều 3 cạnh của tam giác MIC. e) Khi M chuyển động trên cung AC thì đường tròn ngoại tiếp tam giác IMC đi qua hai điểm cố định.
a: góc AMB=góc ACB=1/2*sđ cung AB=90 độ
=>AM vuông góc MB và AC vuông góc CB
góc BHK+góc BCK=180 độ
=>BHKC nội tiếp
góc EIA+góc EMA=180 độ
=>EIAM nội tiếp
b: Xét ΔAMK và ΔACM có
góc AMK=góc ACM(=góc ABM)
góc MAK chung
=>ΔAMK đồng dạng với ΔACM
=>AM/AC=AK/AM
=>AM^2=AK*AC
c: Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BI*BA=BM*BE
=>AE*AC+BM*BE=AB^2