`A + B + C = x^2yz + xy^2z + zy^2x = xyz(x+y+z) = xyz`.
\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)
Vậy ta có đpcm
`A + B + C = x^2yz + xy^2z + zy^2x = xyz(x+y+z) = xyz`.
\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)
Vậy ta có đpcm
Cho f( x ) = ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f (1); f(2) là bình phương của một số nguyên.
Câu 5. (0,5 điểm)
Cho f(x) = ax3 + bx2 + cx + d trong đó a, b, c, d ∈ Z và thỏa mãn b =3a + c Chứng minh rằng f (1).f(-2) là bình phương của một số nguyên
cho f(x)=ax^3+bx^3+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1)*f|(-2) là bình phương của 1 số nguyên
cho f(x)=ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f(1),f(-2) là bình phương của một số nguyên.
Ai làm nhanh nhất mình k nha, mình đang cần gấp.
cho x,y,z là các số nguyên dương và x +y+z là số lẻ, các số thực a,b,c thỏa mãn (a-b)/x=(b-c)/y= (a-c)/z chứng minh rằng a= b= c
Bài 1:
a. Cho a,b,c > 0. CHứng tỏ rằng: M= a/a+b + b/b+c + c/c+a không là số nguyên.
b. Cho a,b,c thỏa mãn: a+b+c = 0. Chứng minh rằng: ab+bc+ca ≤ 0.
Bài 2:
Tìm hai số dương khác nhau x,y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Cho f(x)=ax3+bx2+cx+d trong đó a,b,c,d thuộc D và thỏa mãn b=3a+c. Chứng minh rằng f(1).f(2) là bình phương của 1 số nguyên