a, dùng pytago tính ra BC = 10 cm
tam giác ABC có AD là phân giác (gt)
=> CD/AC = BD/AB (tính chất)
=> CD + DB/AB+AC = CD/AC + BD/AB
AB = 6; AC = 8; BC = 10 và CD + DB = BC
=> 10/14 = CD/8 = BD/6
=> CD = 40/7 và BD = 30/7
a, dùng pytago tính ra BC = 10 cm
tam giác ABC có AD là phân giác (gt)
=> CD/AC = BD/AB (tính chất)
=> CD + DB/AB+AC = CD/AC + BD/AB
AB = 6; AC = 8; BC = 10 và CD + DB = BC
=> 10/14 = CD/8 = BD/6
=> CD = 40/7 và BD = 30/7
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm. Phân giác AD. Kẻ DH vuông góc với AB. Tính DH,AD.
Tam giác ABC, góc A=90độ, AB= 6cm, AC= 8cm. Kẻ phân giác AD.
a, Tính BD, DC
b, Kẻ DH vuông góc với AB. Tính DH, AD
Tam giác ABC, góc A= 90đô, AB= 6cm, AC=8cm. Kẻ phân giác AD.
a, Tính BD, DC
b, Kẻ DH vuông góc với AB. Tính DH, AD
Cho tam giác abc vg tại a,ab=6 ac=8 phan giác ad
a Tính độ dài bd và cd
b kẻ dh vg góc với ab.Tính dh ad
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D a)Tính độ dài các đoạn thẳng AC,AD và DC b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
Cho tam giác abc vuông tại a có ab=12cm, bc= 13cm a. Tính ac b. Tia phân giác của góc b cắt ac ở d. Tính ad, cd c. Kẻ dh vuông góc với bc(h thuộc bc). Tính dh d. Kẻ hi vuông góc với ab( i thuộc ab). Tính diện tích tứ giá
1.Cho tam giác ABCcân tại A có AB = AC = 100cm, BC = 120cm. Hai đường cao AD, BE cắt nhau tại H.a)Tìm các tam giác đồng dạng với tam giác BDHb)Tình độ dài các đoạn: HD, AH, BH, EH
2.Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Đường cao AH, đường phân giác BDa)Tình độ dài AD, DCb)Gọi I là giao điểm của AH và BD. C/m: AB.BI = BD.HBc)C/m: Tam giác AID cân
3.Cho hình thang cân ABCD (AB//CD), AB < CD. Đường cao BH chia cạnh CD thành 2 đoạn DH = 16cm, HC = 9cm. Biết BD vuông góc BC.a)Tính đường chéo AC và BD của hình thangb)Tính diện tích hình thangc)Tính chu vi hình thang
Cho ∆ABC vuông tại A.Vẽ đường cao AD, biết AC=6cm, AB=8cm.
a)CM: ∆ADC đồng dạng ∆BAC.
b)Tính độ dài CD, AD.
c)Kẻ DE vuông góc với AB tại E, DH vuông góc với AC tại H. CM: AB×AE=AH×AC
d)Gọi G là trung điểm của BC. CM: AG vuông góc với EH và tính diện tích tứ giác AEGH.
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18