bài 6 :
1) cho p và p + 8 đều là số nguyên tố (p>3). hỏi p + 100 là số nguyên tố hay hợp số ?
2) trog một phép chia,số bị chia bằng 63,số dư bằng 8. tìm số chia và thương
3) cho A = 5 +52 + 53 +...+52016. Tìm x để 4A + 5 = 5x.
4) chúng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
5) chứng tỏ rằng tổng A = 405n + 2405 + m2
6) Cho S = 1 + 3 + 32 + 33 + ...+ 398. Chứng minh S không phải là số chính phương.
7) So sánh hai hiệu : 20182019 - 20182018 và 20182018 - 20182017.
8) Khi chia một số cho 255 ta được số dư là 100. hỏi số đó chia hết cho 85 không? Vì sao? Nếu có dư thì số như là bao nhiêu?
9) Chứng minh rằng với mọi số tự nhiên n thì n2 + n +1 không chia hết cho 4.
mình chia 2 phần ạ. còn phần 2 mình sẽ viết. mong mn giúp mình ạ ^^ mình cần rất gấp vì mai mình đi học rồi. mn ko giúp mình là coi như mình toang luôn T-T
p >3và p là số nguyên tố ⇒ p có dạng 3k+1;3k+2
Nếu p=3k+1⇒p+8=3k+1+8=3k+9=3(k+3) chia hết cho 3 nên là hợp số
Nếu p=3k+2⇒p+100=3k+2+100=3k+102=3(k+34) chia hết cho 3 nên là hợp số
Bài 7:
\(2018^{2019}-2018^{2018}=2018^{2018}\cdot2017\)
\(2018^{2018}-2018^{2017}=2018^{2017}\cdot2017\)
Do đó: \(2018^{2019}-2018^{2018}>2018^{2018}-2018^{2017}\)