Cho hình thang ABCD ( AB // CD và AB < CD) Gọi I,K,E lần lượt là trung điểm của BD,AC,BC.
a) Chứng minh IE // AB và ba điểm I,K,E thẳng hàng
b) Kẻ AP vuông góc với CD tại P, BQ vuông góc với CD tại Q. Chứng minh IK = (DP +CQ) : 2
Cho hình thang ABCD (AB//CD). Gọi I,K,M lần lượt là trung điểm của AB, BD, AC và E là giao điểm của IK và CD. Chứng minh: IK=KE
Bài 1 cho hình thang ABCD (AB//CD), Gọi M, N, P lần lượt là trung điểm của AD; BC; BD
a)Chứng minh M, N, P thẳng hàng
b)gọi K là giao điểm của AC và MN. Chứng minh K là trung điểm AC
c) chứng minh PK = (CD-AB):2
Cho hình thang ABCD có hai đáy là AB và CD . Gọi E , F , K lần lượt là trung điểm của các cạnh AD , BC ,BD .
a ) Chứng minh EK//AB , KF//AB và E , F , K thẳng hàng
b) Gọi I là giao điểm EF và AC . Chứng minh : IA = IC
c ) Chứng minh : IE = KF và KE = IF
d ) Cho biết AB = 6cm , CD = 10cm . Tính IK.
Cho hình thang ABCD ( AB//CD ). Gọi E, F lần lượt là trung điểm của AD và BC. ĐƯờng thẳng EF cắt BD ở I. cắt AC ở K.
a) Chứng minh AK=KC; BI=IK
b) Cho AB=6, CD=10. Tính EI, KF, IK.
Bài 9 Cho hình thang ABCD (AB//CD), M là trung diểm của CD. gọi I là giao diểm của AM và BD,K la giao điểm của Bm và AC.
A,Chứng minh IK // AB
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F, Chứng minh EI=IK=KF
c, biết diện tích hình thang ABCD bằng 45 cm2 , chiều cao h của hình thang bằng 6cm, CD=2AB.Tính kích thước hai đáy của hình thang
cho hình thang ABCD (AB//CD) DC> AB. Gọi M,N,P,Q lần lượt là trung điểm AD, BD, AC, BC. Chứng minh:
a) M,N,P,Q thẳng hàng
b) NP= (1/2).(DC-AB)
Cho hình thang ABCD (AB//CD). M là trung điểm của CD. AM cắt BD tại I. BM cắt AC tại K. KI cắt BD, BC lần lượt tại E là F. Gọi N là trung điểm của AB, O là giao điểm của AC và BD. Chứng minh M, O, N thẳng hàng.
Cho hình thang ABCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a) Chứng minh IK // AB.
b) Đường thẳng IK cắt AD, BC lần lượt ở E và F. Chứng minh EI = IK = KF.