Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MinhDucを行う

Bài 5. Người ta muốn chia 374 quyển vở, 68 cái thước và 918 nhãn vở thành một số phần thưởng như nhau. Hỏi có thể chia được nhiều nhất là bao nhiêu phần thưởng, khi đó mỗi phần thưởng có bao nhiêu quyển vở, thước, nhãn vở?

❖ Khang/GD❄ 『ʈєɑɱ❖Hoàng...
24 tháng 12 2021 lúc 20:23

Gọi xx là số phần thưởng có thể chia được (x∈N*)

Vì người ta muốn chia 374 quyển vở , 68 cái thước, 918 nhãn vở thành một số phần thưởng như nhau nên suy ra 374 chia hết cho x68 chia hết cho x918chia hết cho x

⇒x∈UC(374;68;918)

Lại có x lớn nhất nên x=UCLN(374;68;918)

Ta có : 

  374=2.11.17 ;           68=22.17  ;           918=2.33.17

⇒UCLN(374;68;918)=2.17=34

Do đó có thể chia nhiều nhất thành 34 phần thưởng. 

Khi đó, mỗi phần thưởng có số quyển vở là :

         374:34=11 (quyển vở)

Mỗi phần thưởng có số cái thước là :

         68:34=2 (cái thước)

Mỗi phần thưởng có số nhãn vở là :

         918:34=279 (nhãn vở )

Vậy có thể chia nhiều nhất thành 34 phần thưởng, mỗi phần thưởng có 11 quyển vở, 22 cái thước và 27 nhãn vở.

Trần Đức Duy
17 tháng 12 2023 lúc 20:06

Phân tích ƯCLNcủa cả ba loại .

Phân tích :

374 = 2 . 11 . 17

68 = 22 . 17

340 = 17 . 22 . 5

ƯCLN( 374 ; 68 ; 340 ) cũng là số phần thưởng chia được nhiều nhất : 34 

Mỗi phần có :

374 : 34 = 11 ( quyển vở )

68 : 34 = 2 ( thước kẻ )

340 : 34 = 10 ( nhãn vở )


Các câu hỏi tương tự
Tô Đình Nam
Xem chi tiết
Trần Minh Anh
Xem chi tiết
Luyện Gia Bảo
Xem chi tiết
Trần Gia Huy
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết
Trần Minh Vy
Xem chi tiết
Tốt An Ninh (Chuyên Thiế...
Xem chi tiết
Nguyễn Hà Minh Nghĩa
Xem chi tiết
hoàng thị minh
Xem chi tiết