a) Ta có: x\(^3\)-13x = \(x^3\)-x-12x = x(x\(^2\)-1) -12x = (x+1)x(x-1) -12x chia hết cho 6 vì
(x+1)x(x-1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6
b) Ta có: x\(^3\)+41x = x\(^3\)-x+42 = ...
a) Ta có: x\(^3\)-13x = \(x^3\)-x-12x = x(x\(^2\)-1) -12x = (x+1)x(x-1) -12x chia hết cho 6 vì
(x+1)x(x-1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6
b) Ta có: x\(^3\)+41x = x\(^3\)-x+42 = ...
bài 5 : cmr : a, x thuộc z thì ( x mũ 3 - 13x ) chia hết cho 6
b, ( x mũ 3 + 41x) chia hết cho 6
cho a,b,c,d thuộc z và (a+b+c+d) chia hết co 6
cmr : ( a mũ 3 + b mũ 3 + c mũ 3 + d mũ 3) chia hết cho 6
cho a,b,c,d thuộc z và (a+b+c+d) chia hết co 6
cmr : ( a mũ 3 + b mũ 3 + c mũ 3 + d mũ 3) chia hết cho 6
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
giả sử (x mũ 2 +y mũ 2)chia hết cho 3.CMR y chia hết cho 3,x chia hết cho 3
Với x,y thuộc Z , x khác y chứng minh x mũ 5 - y mũ 5 chia hết cho x-y
1 . chứng minh rằng : 30 mũ 5 x 7 - 6 mũ 5 x 5 mũ 3 x 25 x 4 chia hết cho 3
2 . chứng minh đẳng thức : 12 mũ 5 x 8 = 2 mũ 13 x 243
cmr : với mọi n thuộc N* thì
A= 6 mũ 2n +19 mũ n- 2 mũ n +1 luôn chia hết cho 17