a: Xét ΔABC vuông tại A va ΔEBA vuông tại E có
góc B chung
=>ΔABC đồng dạng với ΔEBA
b: BC=căn 6^2+8^2=10cm
BF là phân giác
=>AF/AB=CF/BC
=>AF/3=CF/5=(AF+CF)/(3+5)=8/8=1
=>AF=3cm
BF=căn 6^2+3^2=3*căn 5(cm)
a: Xét ΔABC vuông tại A va ΔEBA vuông tại E có
góc B chung
=>ΔABC đồng dạng với ΔEBA
b: BC=căn 6^2+8^2=10cm
BF là phân giác
=>AF/AB=CF/BC
=>AF/3=CF/5=(AF+CF)/(3+5)=8/8=1
=>AF=3cm
BF=căn 6^2+3^2=3*căn 5(cm)
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
Tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH. Lấy D đối xứng với B qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA
b) Qua C vẽ đường thẳng vuông góc với tia AD cắt AD tại E. Chứng minh rằng AH.CD = CE.AD
c) Chứng minh tam giác HDE đồng dạng với tam giác ADC.
d) Cho AB = 6cm, AC = 8cm. Tính diện tích tam giác DEC
e) AH cắt CE tại F. Chứng minh ABFD là hình thoi.
cho tam giác ABC vuông tại A , đường cao AH
a. Chứng minh DABC đồng dạng với DHBA, từ đó suy ra AB bình= BH.BC
b. Tia phân giác của góc ABC cắt AH tại I, chứng minh rằng IA/IH=AC/HA
c. Tia phân giác của góc HAC cắt BC tại K, chứng minh rằng IK song song với AC
Cho tam giác ABC vuông tại A có AB = 6cm; Ac = 8cm và đường cao AH.
a)Chứng minh: Tam giác HBA đồng dạng với tam giác ABC
b)Tia phân giác của góc ABC cắt AC tại D và cắt AH tại E. Tính độ dài các đoạn thẳng BC, AH, EH
c)Qua E vẽ đường thẳng song song với AC cắt BC, AB lần lượt tại F và K. Tính độ dài đoạn thẳng AK và diện tích tứ giác AEFD
Trong ∆ABC vuông tại A có AB=6cm, AC=8cm . Đường cao AH ( H€ BC ) a. Chứng minh : ∆ABC đồng dạng với ∆HBA b. Tia phân giác của góc B cắt AH tại E , cắt AC tại F .Chứng minh EA = FC EH FA
Cho tam giác ABC vuông tại A, đường cao AH. Có AB= 6cm, AC= 8cm.
a, Chứng minh tam giác AHC đồng dạng với tam giác BAC.
b, Vẽ tia phân giác của góc ABC cắt cạnh AC ở I. TÍnh độ dài AI và IC
c, Gọi K là chân đường vuông góc kẻ từ C đến tia BI. CHứng minh GÓc AKB = Góc BAH
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Gọi D là điểm đối xứng với B qua H
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) từ C kẻ đường thẳng vuông góc vs tia AD, cắt AD tại E. Chứng minh AH.CD=CE.AD
c) chứng minh tam giác ABC đồng dạng vs tam giác EDC và tính diện tích tam giác EDC bt AB=6cm, AC=8cm
d) bt AH cắt CE tại E, tia FD cắt AC tại K. Chứng minh KD là tia phân giác góc HKE
cho tam giác abc vuông tại a .cạnh ab=6cm, ac=8cm. kẻ đường phân giác abc cắt ac tại d. kẻ ce vuông góc với bd tại e. 1/tính độ dài bc. 2/ chứng minh tam giác abc đồng dạng với tam giác ebc. 3/ chứng minh cd.be=ce.cb . 4/ gọi eh là đường cao của tam giác ebc.chứng minh ch.cb=ed.eb
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Chứng minh: AB²=HB.HC c) Tính độ dài các cạnh BC, AH d) Phân giác của góc ABC cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE