Bài 5: Cho đường tròn (O;R). đường kính AB, kẻ tia tiếp tuyến Ax và trên đó lấy một điểm P sao cho AP> R. Từ P kẻ tiếp tuyến tiếp xúc với đường tròn tại M.
a) C/m: Tứ giác APMO nội tiếp và BM // OP.
b) Đường thẳng vuông góc với AB tạo O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.
c) C/m: PNMO là hình thang cân.
a: góc PAO+góc PMO=180 độ
=>PAOM nội tiếp
Xét (O) có
PA,PM là tiếp tuyến
=>PA=PM
mà OA=OM
nên OP là trung trực của AM
=>OP vuông góc AM
góc AMB=1/2*sđ cung AB=90 độ
=>MB vuông góc AM
=>OP//MB
b: Xét ΔPAO vuông tại A và ΔNOB vuông tại O có
OA=OB
góc POA=góc NBO
=>ΔPAO=ΔNOB
=>PO=NB
mà PO//NB
nên POBN là hình bình hành