cho tam giác ABC vuông tại A, lấy K là trung điểm BC, trên tia đôi của tia KA lấy D sao cho KD=KA.
a) chứng minh CD // AB
b) gọi H là trung điểm của AC, BH cắt AD tại M, DH cắt BC tại .chứng minh tam giác ABH = tam giác CDH
c) chứng minh tam giác HMN cân
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Cho tam giác ABC vuông tại A có AB = 8cm, BC = 10cm. Trên tia đối của AB lấy D sao cho A là trung điểm của BD, Gọi H là trung điểm của BC, DH cắt AC tại M. Đường trung trực d của AC cắt DC tại P. Chứng minh B, M, P thẳng hàng.
Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại M . Kẻ MD vuông góc với BC (D thuộc BC).
a. Chứng minh BA=BD.
b. Gọi điểm E là giao của hai đường thẳng DM và BA. Chứng minh : tam giác ABC = tam giác DBE.
c. Kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K . Gọi N là giao của hai tia DH và AK . Chứng minh : MN là tia phân giác của góc HMK.
d.Chứng minh: Ba điểm B,M,N thẳng hàng.
Cho tam giác ABC có AB = AC. Kẻ tia phân giác của góc BAC cắt BC tại H.
a) Chứng minh tam giác ABH = tam giác ACH từ đó suy ra AH vuông góc với BC
b) Trên tia đối HA lấy điểm D sao cho AH = DH. Chứng minh AC//BD
c) Lấy điểm M thuộc tia AC ( M khác A, C ) sao cho tia MH cắt BD tại K. Chứng minh AM = KD.
d) Gọi N là trung điểm AB. Trên tia CN lấy E sao cho CN = NE ( E khác C ). Chứng minh B là trung điểm ED
( Vẽ hình và giải thích dùm mình nha! Đang cần gấp! )
cho tam giác ABC vuông tại A, AB<AC. lấy điểm D sao cho A là trung điểm của BD
a) chứng minh CA là tia phân giác của góc BCD
b) vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với CB tại F. chứng minh tam giác CEF cân và EF song song với DB
c) so sánh IE và IB
d) tìm điều kiện của tam giác DBC để tam giác BEF cân tại F
GIẢI HỘ MK Ý C VỚI
cho tam giác ABCcân tại A , tia phân giác trong của góc A cắt cạnh BC ở điểm H
a) Chứng minh hai tam giac ABH và ACH bằng nhau
b) Gọi K là trung điểm của AC và G LÀ GIAO ĐIỂM CỦA BK và AH . tRÊN tia BG lấy điểm D sao cho K là trung điểm của GE . cHỨNG MINH DC vuông góc với BC
C) Trên tia AG lấy E SAO CHO h là trung điểm của GE . cHỨNG MINH 3 ĐƯỜNG THẲNG CG,DH,EK cùng đi qua 1 điểm
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai