a.
\(x^2+xy+x=x\left(x+y+1\right)\)
Tại \(x=77;y=22\Rightarrow x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)
b.
\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)
\(=\left(53-3\right)^2=50^2=2500\)
c.
\(x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x+y\right)\left(x-1\right)\)
\(=\left(2001+1999\right)\left(2001-1\right)=4000.2000=8000000\)