Bài 4: Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Gọi M và N lần lượt là trung điểm của AC và AB.
a) Tính MN. Chứng minh MNBC là hình thang.
b) Qua A vẽ đường thẳng song song với BC và cắt BM tại D. Chứng minh ABCD là hình bình hành.
c) Đường thẳng qua B song song với AC cắt DC tại E. Chứng minh ACEB là hình chữ nhật
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=5/2=2,5(cm) và MN//BC
hay MNBC là hình thang
b: Xét ΔCMB và ΔAMD có
\(\widehat{BCM}=\widehat{DAM}\)
CM=AM
\(\widehat{CMB}=\widehat{AMD}\)
Do đó: ΔCMB=ΔAMD
Suy ra: MB=MD
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành