a: Xét ΔABC có AE/AB=AD/AC
nên ED//BC và ED=BC/2(1)
Xét ΔGBC có GI/GB=GH/GC
nên IH//BC và IH=BC/2(2)
Từ (1) và (2) suy ra ED//IH và ED=IH
=>EDHI là hình bình hành
b: Vì EDHI là hình bình hành
nên EI//DH
a: Xét ΔABC có AE/AB=AD/AC
nên ED//BC và ED=BC/2(1)
Xét ΔGBC có GI/GB=GH/GC
nên IH//BC và IH=BC/2(2)
Từ (1) và (2) suy ra ED//IH và ED=IH
=>EDHI là hình bình hành
b: Vì EDHI là hình bình hành
nên EI//DH
Bài 1: Tam giác ABC có AM, BN là các trung tuyến, G là trọng tâm. Gọi E và F lần lượt là trung
điểm của GB và GA. Gọi I là điểm đối xứng với G qua M.
a) Chứng minh BICG và MNFE là hình bình hành.
b) Để MNFE là hình chữ nhật thì cần có thêm điều kiện gì cho tam giác ABC ?
c) Khi BICG là hình thoi, hãy chứng minh tam giác ABC cân tại A.
Bài 1: Tam giác ABC có AM, BN là các trung tuyến, G là trọng tâm. Gọi E và F lần
lượt là trung điểm của GB và GA. Gọi I là điểm đối xứng với G qua M.
a) Chứng minh BICG và MNFE là hình bình hành.
b) Để MNFE là hình chữ nhật thì cần có thêm điều kiện gì cho tam giác ABC ?
c) Khi BICG là hình thoi, hãy chứng minh tam giác ABC cân tại A.
Bài 2: Cho hình bình hành ABCD. Gọi E là điểm đối xứng của A qua trung điểm M
của BC.
a) Chứng minh ABEC là hình bình hành và D, E, C thẳng hàng.
b) Tam giác ABC phải có điều kiện gì thì ABEC trở thành hình thoi.
Cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của BG và CG
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Tam giác ABC có điều kiện gì thì tứ giác MNPQ là hình chữ nhật
c) Nếu các đường trung tuyến BM và CN vuông góc với nhau thì tứ giác MNPQ là hình gì? Vì sao?
Cho tam giác ABC. AM là đường trung tuyến, đường thẳng song song với BC cắt các đoạn thẳng AB,AC,AM lần lượt tại D,E,N. a)Chứng minh N là trung điểm DE.
b) Gọi S là giao điểm của BN vả AC,K là giao điểm của CN và AB. Chứng minh KS//BC.
Cho tam giác ABC, các trung tuyến BD, CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm GC.
a)CM: tứ giác DEHK là hình bình hành
b)Gọi M là trung điểm BC. CM 3 điểm A,G,M thẳng hàng
c)tam giác ABC cần điều kiện j tứ giác DEHK là hcn
b1: cho tam giác nhọn ABC. Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK.
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy
Ai Giúp Ạ
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Cho hình bình hành ABCD. Qua đỉnh A kẻ đường thẳng song song với đường chéo BD cắt các tia CB và CD lần lượt tại E và F. Chứng minh: a) Tứ giác EBDA và ABDF là hình bình hành. b) B, D, A lần lượt là trung điểm của EC, CF, EF. c) Ba đường ED, BF, AC đồng quy. d) Hai tam giác ECF và ABD có cùng trọng tâm.
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN.
Cho tam giác ABC, có AB<AC, D thuộc AB, E thuộc AC sao cho BD=CE. Gọi M là trung điểm DE, N là trung điểm BC. MN cắt AB tại H, cắt AC tại K. Chứng minh tam giác AHK cân