Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Sơn Nguyễn

Bài 4: Cho nửa đường tròn (O), đường kính AB = 2R. Từ A và B kẻ 2 tiếp tuyến Ax và By. Từ M bất kì trên nửa đường tròn kẻ tiếp tuyến thứ 3 với nửa đường tròn đó, tiếp tuyến này cắt Ax ở C cắt By ở D.

a)     Chứng minh: CD = AC + BD

b)    Chứng minh:  vuông

c)     AM cắt OC ở E, BM cắt OD ở F. Chứng minh EF = R

d)    Chứng minh: đường tròn đường kính CD nhận AB là tiếp tuyến

e)     OM cắt EF ở I. Khi M di động trên cung AB thì I chạy trên đường nào?

f)      Tìm vị trị điểm M để diện tích ACDB nhỏ nhất.

Bài 5: Cho tam giác ABC vuông cân ở C , E là điểm bất kì trên BC. Qua B kẻ tia vuông góc với tia AE tại H và cắt tia AC tại K.

a)     Chứng minh: 4 điểm B, H, C, A cùng thuộc một đường tròn

b)    Chứng minh: KC. KA = KH. KB

c)     Khi E chuyển động trên BC thì tổng (BE. BC + AE. AH) có giá trị không đổi

Bài 6: Cho nửa đường tròn (O), đường kính AB. Hai điểm CD thuộc nửa đường tròn sao cho góc COD = 900 (C  thuộc cung AD). M là 1 điểm bất kỳ trên nửa đường tròn sao cho AC = CM các dây AM, BM cắt OC, OD tại E, F.

a)     Tứ giác OEMF là hình gì?

b)    Kẻ tiếp tuyến với nửa đường tròn tại M cắt tia OC, OD tại I, K. Chứng minh tia IA là tia tiếp tuyến của đường tròn (O)

Hoàng Sơn Nguyễn
25 tháng 12 2023 lúc 17:03

b) bài 4 là chứng minh tam giác COD vuông

Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 18:22

Bài 5:

a: Xét tứ giác BHCA có \(\widehat{BHA}=\widehat{BCA}=90^0\)

nên BHCA là tứ giác nội tiếp

=>B,H,C,A cùng thuộc một đường tròn

b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có

\(\widehat{HKA}\) chung

Do đó: ΔKHA đồng dạng với ΔKCB

=>\(\dfrac{KH}{KC}=\dfrac{KA}{KB}\)

=>\(KH\cdot KB=KA\cdot KC\)

c: Gọi giao điểm của KE với BA là M

Xét ΔKBA có

AH,BC là các đường cao

AH cắt BC tại E

Do đó: E là trực tâm của ΔKBA

=>KE\(\perp\)BA tại M

Xét ΔBME vuông tại M và ΔBCA vuông tại C có

\(\widehat{MBE}\) chung

Do đó: ΔBME đồng dạng với ΔBCA

=>\(\dfrac{BM}{BC}=\dfrac{BE}{BA}\)

=>\(BM\cdot BA=BC\cdot BE\)

Xét ΔAME vuông tại M và ΔAHB vuông tại H có

\(\widehat{MAE}\) chung

Do đó: ΔAME đồng dạng với ΔAHB

=>\(\dfrac{AM}{HA}=\dfrac{AE}{AB}\)

=>\(AH\cdot AE=AM\cdot AB\)

\(BC\cdot BE+AH\cdot AE=BM\cdot BA+AM\cdot AB=AB^2\) không đổi


Các câu hỏi tương tự
Toàn Dương Thanh
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
NGUYỄN THÙY LINH
Xem chi tiết
Đậu Đức Anh
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
NGUYỄN THÙY LINH
Xem chi tiết
van hung Pham
Xem chi tiết
dương huỳnh thi thùy
Xem chi tiết
nguyễn diệu linh
Xem chi tiết