Xét tứ giác CHOI có \(\widehat{CHO}+\widehat{CIO}=90^0+90^0=180^0\)
nên CHOI là tứ giác nội tiếp
=>C,H,O,I cùng thuộc một đường tròn
Xét tứ giác CHOI có \(\widehat{CHO}+\widehat{CIO}=90^0+90^0=180^0\)
nên CHOI là tứ giác nội tiếp
=>C,H,O,I cùng thuộc một đường tròn
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AC>CB, C khác A và B. Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I, kẻ tiếp tuyến Ax của đường tròn (O;R), tia OI cắt Ax tại M. Gọi giao điểm BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC=KH
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AB>CB;C khác A và B.Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I 1/Chứng minh 4 điểm C,H,O,I CÙNG THUỘC MỘT ĐƯỜNG TRÒN 2/kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M.C/m MC là tiếp tuyến của đường tròn O 3/C/m tam giác AMO đồng dạng với HCB 4/Gọi K là giao điểm của CH và MB. Chứng minh K là trung điểm của CH
cho AB là đường kính của đường tròn ( O;R) , C là một điểm thay đổi trên đường tròn ( C khác A và B ) , kẻ CH vuông góc với AB tại H . Gọi I là trung điểm của AC ; OI cắt tiếp tuyến tại A của đường tròn ( O ; R) tại M ; MB cắt CH tại K
a , chứng minh 4 điểm C;H;O;I cùng thuộc một đường tròn
b , chứng minh MC là tiếp tuyến của ( O;R)
c, chứng minh K là trung điểm của CH
d, xác định vị trí của điểm C để chu vi tam giác ACB đạt giá trị lớn nhất ? tìm giá trị lớn nhất đó theo R
Cho AB là đường kính của đường tròn (O;R). C là một điểm thay đổi trên đường tròn ( C khác A và B), kẻ CH vuông góc với AB tại H .Gọi I là trung điểm của AC, OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M, MB cắt CH tại K.
a) Chứng minh 4 điểm C,H,O,I cùng thuộc một đường tròn
b) Chứng minh MC là tiếp tuyến của (O;R)
c) Chứng minh K là trung điểm của CH
d) Xác định vị trí của C để chu vi tam giác ACB đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó theo R
đang cần gấp mn giải lẹ giùm mình
Cho đưong tròn tâm O có bán kính R, đường kính AB. Qua điểm A kẻ đường thẳng d vuông góc AB tại A. Trên d lấy điểm C sao cho AC >R. Lấy điểm M thuộc dưong tròn (O) sao cho OM vuông góc với CM tại M. a) Chứng minh 4 điểm A, C, O, M thuộc cùng một đường tròn. b) Gọi K là giao điểm thứ 2 của BC với đường tròn (O). Chứng minh: BC BK = 4R mũ 2 c) Chứng minh: MB // OC d) Chứng minh: góc CMK = gócMBC
GIÚP MIK VỚI Ạ
Cho đường trồn tâm O đường kính AB. Trên đường tròn tâm O lấy điểm C ( C không trùng với A,B và CA > CB) các tiếp tuyến của đường tròn O tại A và C cắt nhau ở điểm D kẻ CH vuông góc với AB ( H thuộc AB) DO cắt AC tại O
a) chứng minh tứ giác OECH nội tiếp
b) Đường thaeng CD cắt cắt AB tại F. Chứng minh 2BCF +CFB = 90°
c) BD cắt CH tại M. Chứng minh EM || AB
Cho đường tròn (O) đường kính AB. Từ điểm C thuộc đường tròn (O) kẻ CH vuông góc với AB ( C khác A và B; H thuộc AB). Đường tròn tâm C bán kính CH cắt đường tròn(O) tại D và E. Chứng minh DE đi qua trung điểm của CH
Cho nửa đường tròn (O; R) đường kính AB. Lấy một điểm C thuộc nửa đường tròn sao cho CA < CB (C khác A). Kẻ CH vuông góc với AB. Đường tròn đường kính CH cắt CA,CB tại D,E
CHứng minh1 : CO vuông góc với DE Chứng minh 2 : AD.DB +AE.EC =AH bình
Cho đường tròn (O;R) có AB là đường kính. H là một điểm nằm giữa A và O. Dây CD vuông góc với AB tại H. Kẻ OI vuông góc với CB(I in CB) , tia OI cắt (O) tại M. a) Chứng minh tứ giác OICH nội tiếp. b) Gọi E là giao điểm của AM với CD. Chứng minh AC^ 2 =AE.AM . c) Gọi K là giao điểm của AM với BC, F là giao điểm của DM với AB. Chứng minh KF song song CD.
cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn ( C khác A và B ), kẻ CH vuông góc với AB tại H. Gọi I là trung điểm cùa AC; OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M; MB cắt CH tại K
a) C/m 4 điểm C,H,O,I cùng thuộc 1 đường tròn
b) C/m MC là tiếp tuyến của (O;R)
c)C/m K là trung điểm của CH
d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt gtln?. Tìm gtln đó theo R