Bài 3:
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow2A+3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow n=101\)
\(A=3+3^2+...+3^{100}\Leftrightarrow3A=3^2+3^3+...+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\\ \Leftrightarrow2A=3^{101}-3\\ \Leftrightarrow2A+3=3^{101}\\ \Rightarrow n=101\)