P(1)=100+99+...+2+1=\(\frac{100\left(100+1\right)}{2}=5050\)
thay x=1
ta có F(1)=100.1^100+99.1^99+98.1^98+...+2.1^2+1
=100+99+98+...+1
=1+2+..+98+99+100
=(100+1).100:2=5050
=>F(x)=5050
Thay x = 1
Ta có :F(1) = 100.1^100+99.1^99+98.1^98...+2.1^2+1
=100+99+98+....+1
=(100+1).100:2=5050
Suy ra : F(x)=5050
thay x=1
ta co
P1=100*1^100+99*1^99+98*1^98+......+2*1^2+1
=100+99+98+97+....+2+1
=(100+1)*100/2
=50
good luch
P(1)=100.1100+99.199+98.198+...+2.12+1
=100+99+98+...+2+1
Có tất cả số số hạng là: (100-1).1+1=100 (số hạng)
Tổng= (1+100).100:2= 5050
Vậy P(1)= 5050